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and coworkers2 reported that the gas-phase pyrolysis (550°, 
N2 flow) of phenyltrimethylsilyldiazomethane (1) afforded 
benzosilacyclopentene (4) and that this product was evi­
dence for the intermediacy of silacyclopropane (3), which 
resulted from the intramolecular insertion of carbene 2 into 
a C-H bond of a methyl group (Scheme I). 

We had previously observed the formation of 4, and ra­
tionalized it in terms of quite a different mechanism. We 
considered the precursor to 4 to be the carbene 5, itself 
formed by a well-precedented sequence of steps involving 
carbene-to-carbene rearrangements3 (Scheme II). Carbene 
5 can lead to 4 by a straightforward insertion into a carbon-
hydrogen bond. 

A method of distinguishing between these two mechanis­
tic pathways is obvious once it is noted that the benzylic 
carbon of 1 remains aliphatic in the Ando mechanism 
(Scheme I) but becomes the aromatic carbon bonded to sili­
con in the carbene-interconversion mechanism (Scheme II). 
Phenylmagnesium bromide was converted to 13C labeled 
benzoic acid with labeled CO2 and then to labeled 1 by the 
procedure of Brook and Jones.4 Mass spectrometric analysis 
of the intermediate tosylhydrazone indicated a 24.3% 13C 
content. Thermal decomposition of labeled 1, carried out in 
the inlet port of the preparative gas chromatograph at 300°, 
afforded 4. Comparison of the 13C nmr spectra of labeled 
and unlabeled 4 revealed no enhancement of the three ali­
phatic carbon absorptions (31.81, 11.47, and —1.59 ppm 
from TMS) and hence no incorporation of 13C into the sat­
urated carbons of the five-membered ring. The absorption 
of only one aromatic carbon (139.86 ppm from TMS) was 
enhanced by an average factor of 19.7 over the other aro­
matic carbon absorptions. 

A second sample of 4 was prepared independently by the 
flash pyrolysis (420° (0.5 mm)) of the lithium salt of the to­
sylhydrazone of phenyltrimethylsilyl ketone. The ketone 
was prepared from 13C labeled methyl benzoate (12.8%) by 
the method of Picard, et al.5 In this case an average en­
hancement of 13-fold was observed for the same aromatic 
absorption as was found previously in the decomposition of 
the diazo compound. 

The conclusion that the labeled carbon is now in the aro­
matic ring is further confirmed by a comparison of the mass 
spectra of the labeled and unlabeled benzosilacyclopentenes 
(4). The fragmentation of 4 proceeds through loss of a 
methyl group and then the loss of C2H4 (there is no meta-
stable peak for the C2H4 loss, so the concertedness of the 
process is unknown) to yield an ion of the composition 
C7H7Si (m/e 119.03185 ± 0.0006, calcd 119.0317). Com­
parison of the m/e 162/163 and 119/120 intensity ratios 
indicated a 13C content of 24.8% in the parent ion with 
23.6% in the fragment ion. Thus, within reasonable experi­
mental error limits, all of the extra 13C remained with the 
aromatic fragment. 

4 
m/e 162 

-CH3 —C2H« IpSi -CH 3 

m/e 119 

In summary, the thermal conversion of 1 to 4 does not in­
volve a silacyclopropane but rather provides a further ex­
ample of the phenylcarbene-cycloheptatrienylidene inter-
conversion. 
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Crystal Structure of 
5,6,1 l,12-Tetradehydrodibenzo[tf,e Jcyclooctene 
(sym -Dibenzo- l,5-cydooctadiene-3,7-diyne) 

Sir: 

We report the results of a single-crystal X-ray structure 
determination on the recently described1 5,6,11,12-tetra-
dehydrodibenzo[a,e]cyclooctene (1). The only other pre­
viously known compound with two triple bonds in the eight-
membered system is 1,5-cyclooctadiyne (2), for which only 
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Figure 1. The molecule seen along the direction corresponding to the 
maximum moment of inertia. The carbon atoms are represented8 by 
temperature-factor ellipsoids drawn at the 40% probability level. Hy­
drogen atoms are on an arbitrary scale. 

preliminary structural data are available.2 The present 
study provides evidence that the conjugated eight-mem-
bered ring of 1 in the crystalline state is substantially pla­
nar, the slight deviation from planarity being probably due 
to intermolecular effects. 

Crystals of 1 suitable for diffraction work could be grown 
from a tetrahydrofuran solution. The compound crystallizes 
in the monoclinic system with the following unit cell con­
stants: a = 6.144(1), b = 11.840(1), c = 14.031 ( I ) A ; /3 
= 91.01 (1)°; space group Pl\/n; Z = 4; pc a l c d = 1.302 g 
cm - 3 ; M(CU Ka) = 5.75 cm - 1 . The density was not mea­
sured, due to the paucity of the substance in our hands after 
crystallization. A complete set of diffraction maxima within 
a 6 sphere of 70° was measured with a fully automated 
four-circle diffractometer using Cu radiation [X(Cu Ka) = 
1.5418 A; graphite monochromator] and a variable rate 
6-28 scan technique. A single standard check reflection was 
measured after every 15 reflections; a general downward 
trend in the intensity of this reflection was observed, the in­
tensity drop at the end of the data collection amounting to 
10%. Of the 1910 reflections measured a total of 1775 were 
judged observed after correction for Lorentz, polarization, 
background, and decay effects. The structure was solved by 
automated interpretation3 of the Patterson function. Least-
squares refinement using anisotropic thermal parameters 
for carbon atoms, isotropic temperature parameters for hy­
drogen atoms, an overall scale factor, and a secondary ex­
tinction parameter4 gives a value of the conventional R 
index5 of 0.048 and a weighted R index6 of 0.050. The re­
fined atomic coordinates are given in Table I;7 observed and 
calculated structure factors are listed in Table II.7 

A drawing of the molecule is shown in Figure 1, which 
includes bond distances and angles involving C atoms and 
C-H distances.8 For sake of clarity the values of the C - C -
H angles have not been reported; they range between 118 
and 121° (esd's = 1°). 

Four structural features are of special note. (1) The aver­
age value of the angles at carbon atoms involved in triple 
bonds is 155.8° (to be compared with a value of 159.1° in 2 
and of 158.5° in cyclooctyne9). (2) The distance between 
the triple bonds is 2.61 A (against 2.57 A in 2). (3) Atoms 
C(5), C(6), C ( I l ) , and C(12) are coplanar within 0.001 A 
(plane A); the displacements of the other four atoms of the 
eight-membered ring from plane A range between 0.014 
and 0.023 A, all in the same direction. (4) The two outer 
benzene rings are planar within experimental uncertainty 
(maximum deviation 0.003 A); their planes are both folded 
out of plane A, on the same side, by about 2°. This folding, 
and the consequent nonstrict planarity of the central ring, 
can presumably be ascribed to packing interactions. Among 
these, we notice a rather short contact of 3.45 A, which in­
volves atom C(I) and atom C(8) of another molecule at 1 -

x, —y, 1 — z; a less critical contact of 3.54 A implicates 
atom C(14) of the first molecule and atom C(IO) of the 
molecule transformed as for C(8). 
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Correlation between Proton Affinity and 
Core-Electron Ionization Potentials for 
Double-Bonded Oxygen. Site of Protonation in Esters 

Sir: 

A striking correlation of the proton affinities of a number 
of alcohols and amines with the core-electron ionization po­
tentials of oxygen or nitrogen in the same molecule has been 
pointed out by Martin and Shirley1 and by Davis and Raba-
lais.2 The change in proton affinity from one molecule to 
another is almost exactly equal to the change in core ioniza­
tion potential. The reason for this result is that the removal 
of a core electron from the oxygen or nitrogen is electrically 
equivalent to the addition of a proton at the same site. It 
was suggested by Martin and Shirley that the ionization-
potential shifts and proton affinities might be comparable 
over a wider range than they had considered. 

Davis and Rabalais found, however, that the point for ac­
etone fell off of their correlation line by about 1 eV and that 
the point for formic acid was off by nearly 0.5 eV. They 
concluded, therefore, that double-bonded oxygen does not 
fit the correlation and proposed a number of reasons to ac­
count for the phenomenon. 

We have recently remeasured the oxygen Is ionization 
potential in acetone to be 537.92 eV, in substantial dis­
agreement with the previously reported value of 539.0 eV.3 

Our new value falls quite close to the correlation line for the 
alcohols. In addition, we have measured oxygen Is ioniza­
tion potentials for methyl acetate (537.87 and 539.43 eV), 
formaldehyde (539.42 eV4), and acetaldehyde (538.62 eV5) 
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